L=
A ory: PH

Gl X-59.14

DETERMINATIONS OF AERODYNAMIC-
DRAG PARAMETERS OF SMALL
IRREGULAR OBJECTS BY MEANS

OF DROP TESTS

E. R. Fletcher, R. W. Albright,
V. C. Goldizen, and |. G. Bowen

Issuance Date: October 1961

CIVIL EFFECTS TEST OPERATIONS
U.S. ATOMIC ENERGY COMMISSION

PP CATITY TNEPECTED 4
DISTRIBUTION STATEMENT A 7

Approved for Public Release 0 0 9 1 1 0 9 3
~ Distribution Unlimited




NOTICE

This report is published in the interest of providing infor nation which may prove of
value to the reader in his study of effectsdata derived principally from nuclear weapons
tests and from experiments designed to duplicate various characteristics of nuclear
weapons.

This document is based on information available at the time of preparation which
may have subsequently been expanded and re-evaluated. Also, in preparing this report
for publication, some classified material may have been removed. Users are cautioned
to avoid interpretations and conclusions based on unknown or incomplete data.

PRINTED IN USA
Price $1.75. Available from the Office of
Technical Services, Department of Commerce,
Washington 25, D. C.

USKEC Division of Technical Information Extension, Ook Ridge, Tennessas




DETERMINATIONS OF AERODYNAMIC-
DRAG PARAMETERS OF SMALL
IRREGULAR OBJECTS BY MEANS

OF DROP TESTS

By

E. R. Fletcher, R. W. Albright,
V. C. Goldizen, and I. G. Bowen

Approved by: R. L. CORSBIE
Director
Civil Effects Test Operations

Lovelace Foundation for Medical Education and Research
Albuquerque, New Mexico
June 1960




ABSTRACT

During the 1955 and 1957 Test Operations at the Nevada Test Site (NTS), masses and
velocities were determined for more than 20,000 objects, such as glass fragments from
windows, stones, steel fragments, and spheres, which were energized by blast winds resulting
from nuclear explosions. Following the field tests, a mathematical model was devised to help
explain quantitatively the experimental results. This model required certain aerodynamic-drag
information in regard to the displaced objects. It was the purpose of the study outlined in this
report to determine the necessary drag properties for the objects by means of drop tests.

In addition to the objects mentioned above, small laboratory animals, mice, rats, guinea
pigs, and rabbits, were used in the drop tests. The data obtained from these tests were ex-
trapolated to estimate the drag properties for man, and the results compared favorably with
data from other sources. Also a method was developed to estimate the average drag proper-
ties of man from his total surface area, assuming that every possible orientation of a straight,
rigid man with respect to the wind was equally likely.




ACKNOWLEDGMENTS

The work outlined in this report is a segment of the research carried out on the biological
effects of blast from bombs, which was made possible by the support of the Division of Biology
and Medicine of the Atomic Energy Commission under contract with the Lovelace Foundation.
The interest and encouragement of Dr. C. L. Dunpham, Mr. R. L. Corsbie, Dr. H. D. Bruner,
and Dr. J. F. Bonner, all of the Atomic Energy Commission, are gratefully acknowledged.

The Lovelace Foundation also wishes to note that the Defense Atomic Support Agency of
the Department of Defense joined the Atomic Energy Commission in supporting the work on
blast biology during the past year and to express appreciation for the coordinated understanding
of the two agencies, which has allowed the program to progress smoothly.

The authors are indebted to Dr. C. S. White and Mr. R. V. Taborelli of Lovelace Founda-
tion for technical advice and assistance in planning.

Appreciation also is expressed to the Lovelace Foundation personnel who assisted in the
preparation of this report: Mr. Jerome Kleinfeld, Mr. Malcolm A. Osoff, Mr. David W. Roeder,
and Mr. Robert F. D. Perret prepared the data for charts and tables; Mr. Robert A. Smith,

Mr. Roy D. Caton, Mr. George S. Bevil, Mr. Edward M. Johnsen, and Mrs. Holly Ferguson
prepared the illustrations; and Mrs. Isabell D. Benton, Mrs. Mary E. Franklin, Mrs. Janet
Nelson, and Mrs. Barbara Kinsolving provided editorial and secretarial assistance in the
preparation of the manuscript.



NOMENCLATURE

a = acceleration
Cp = drag coefficient
D = sphere diameter or other characteristic dimension
°F = temperature, degrees Fahrenheit
Fq = drag force
Fg = force of gravity
g = acceleration of gravity
h = height of fall at time t or velocity v
H = total height of fall
K = acceleration-coefficient numeric = (p/g) (A/m) (v/D)?
m, M = mass
m, = reference mass
P, = atmospheric pressure, ambient
Rq = Reynolds number = vD/v
Ry = a function concerned with error in computed velocity
R, = a function concerned with error in computed a
R/, = an approximation to R ,
R}/ = an approximation to R,
s = frontal area of the object
t= instantaneous time
t = thickness of plate-like objects
ty = a reference thickness
T = total time of fall
TND = total time of fall assuming no drag forces
AT =T — TND
8T = timing error
v = instantaneous velocity
V = impact velocity
VND = “no-drag” impact velocity
AV = error in computed impact velocity
X = time numeric = tg(D/v)
AX = increment of X
Y = height-of-fall numeric = hg(D/v)*
AY = increment of Y
Z = velocity numeric =Ry = vD/v
a = acceleration coefficient = sCp/m
a, = reference acceleration coefficient
Aa = error in computed o
o =T/Typ
6,’1. = an approximation to 6
T =an approximation to T

Oy = V/VxD




6y =an approximation to 8y
v = kinematic viscosity of the air
p = density of air
‘p = density of plate-like objects
po = a reference density of plate-like objects
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Chapter 1

INTRODUCTION

1.1 OBJECTIVES

During the 1955 and 1957 Test Operations at the Nevada Test Site (NTS), masses and
velocities of more than 20,000 objects,'™® such as glass fragments from windows, stones, steel
fragments, and spheres, which were energized by blast winds were experimentally determined,
and the time-displacement history of an anthropometric dummy simulating man® was measured.
The availability of such a mass of data stimulated an analytical study calculated to arrive at a
mathematical formulation capable of predicting the translation of objects by blast winds. The
model’ designed to predict this translation assumed that certain aerodynamic properties of the
objects displaced were known. The purpose of this report is to describe the drop-test studies,
both theoretical and experimental, which were undertaken to determine the aerodynamic
properties of interest.

1.2 HISTORICAL BACKGROUND

When objects dropped in air were first cbserved to fall at varying rates, it was presumed
that the difference was inherent in the nature of the materials of which the objects were com-
posed. In the early 16¢# century, Galileo disproved this theory and established the true cause
of the observed variations. Small spheres of different substances were dropped at the same
instant from the Leaning Tower of Pisa, and all hit the ground at nearly the same time. Next,
Galileo dropped objects composed of the same materials in a variety of shapes and observed
that they then fell at different rates. Galileo concluded that gravity acted upon all objects with
the same intensity but that the air resisted their fall in varying degrees, depending on the
object being dropped. It then followed that all objects would fall at the same rate in a vacuum.

After the invention of the air pump, Newton verified Galileo’s theory with his famous
“guinea and feather” experiment. A gold coin, called a “guinea,” and a feather were placed ina
tube about 5 ft long. When the tube was turned on end, they were observed to fall at different
rates. When most of the air was removed from the tube with an air pump, no difference in the
rates of fall of the guinea and the feather was perceivable.

The force with which the air acts upon a falling object came to be known as a drag force
since it always resisted the motion of the object. The first experiments to determine the
nature of this drag force were performed in 1853 by Piobert, Morin, and Didion,8 who observed
an object falling in air and recorded its velocity until it reached terminal velocity. Since the
object at that point was not undergoing acceleration, the drag force equaled the force of gravity.
They were able to obtain terminal velocities up to about 30 ft/sec. In 1892 Cailletet and
Colardeau® dropped plane surfaces of various shapes from the Eiffel Tower and recorded the
descent times; they obtained velocities up to 90 ft/sec. In 1905, Eiffel’ conducted a series of
experiments that involved attaching the object to be tested to an apparatus that slid down a
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stretched wire. This apparatus actually recorded both the distance dropped and the drag force
as a function of time, measured by the vibrations of a tuning fork. Velocities up to 130 ft/sec
were obtained.

Today most experiments involving drag measurements are conducted in an artificial air
stream.!! This method possesses many advantages over the drop test. In addition to improving
accuracy, the use of an artificial air stream makes it easier to vary the environment of the
object being tested. The drop technique is, however, still used to determine air density,iz_15
to study parachute descents,® 1% and to determine the drag force on bombs at high subsonic
speeds.? It has also been used to study impact damage to small laboratory animals.?*%3
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Chapter 2

EQUATIONS OF MOTION

2.1 INTRODUCTORY REMARKS

To predict the motion of an object displaced by the movement of the surrounding air, one
must know the object’s acceleration coefficient (@). The quantity o has been defined as the
product of the presenting area and the drag coefficient divided by the mass of the object.1 The
same quantity is, of course, involved in the equations of motion of an object in free fall, where
the object is moving instead of the air. It will be shown in this chapter by development of
equations of motion that @ can be determined experimentally by drop tests if the time of fall,
height of drop, acceleration of gravity, and air density are known. Analysis of experimental
data involves the assumptions that (1) no vertical air motion existed, (2) the air density re-
mained constant over the entire drop interval, and (3) the @ of the falling object did not change
during the fall. Measures were taken to reduce air motion during the drop tests (see Chap. 3).
Since the total drop height was less than 50 ft, the assumption of constant air density is reason-
able. Changes in @ may occur during fall by two processes: First, the presenting area may
change for objects other than spheres because of rotation, and, second, the drag coefficient, a
function of Reynolds number and thus of velocity of fall, may change. A further discussion of
these topics will be found in Chap. 4.

2.2 BASIC EQUATIONS

A free-falling object is subjected to two forces: a drag force (Fgy) resulting from the drag
of the air on the object and the force of gravity (Fg). For the case of free fall in still air,

Fq=(%)pv’Cps (2.1)
and

Fg =mg (2.2)
where Fj = drag force
p = air density
v = velocity of object
Cp = drag coefficient
s = frontal area of object
F_ = force of gravity
m = mass of object
g = acceleration of gravity
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These two forces (Fq and Fg) act in opposition. By Newton’s second law of motion, their
algebraic sum is equal to the product of the mass and the acceleration (a) of the object, or

ma = mg—(%)pv*Cps

which can be written in the form:

a=g- (v’ =2 2.3)

The quantity sCp/m is the acceleration coefficient (a). Its units are area/mass (ft?/lb is
used throughout this report). Thus

_sCp
a=— (2.4)

Alpha has a special significance since it combines the significant parameters of the object
which influence the drag force and consequently the acceleration of the object, i.e., if two
objects with the same « were dropped at the same time under identical conditions, their accel-
erations and velocities would remain the same throughout the fall.

Therefore Eq. 2.3 can now be written as

a=g(1—v2-gg—) (2.5)

By definition, v and a can be written in differential form:

dh
Vg (2.6)
and
a= %Y (2.7)

where t =time and h = height.

By combining Eqgs. 2.6 and 2.7,

an = v (2.8)

and substituting a from Eq. 2.5 into Eq. 2.8,

dh = __vav (2.9)

-5

Now, if @ is assumed to be constant throughout the low-velocity range v; < v < vy, Eq. 2.9
can be integrated (see Appendix, Sec. A.1.1) over the range hy < h <hyand t; <t <ty to give the
following equations:

hy - hy = (o)~ In {[1 — vy (per/28)"] [1 + v¢ (pa/28)" ]}
— (p)™ In {[1 - v; (pa/20)%] [1 + vy (par/2g) %]} (2.10)
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and

ty — t; = (2gp@)™ " In {[1 - v, (pa/2¢)"] [1 + v, (par/2g) %]}
- (2gpa) ™ In {[1 - v; (pa/2)%] [1 + v; (pa/29)%]  (2.11)

Before these equations were used for numerical computations, they were transformed to a
more convenient nondimensional form, which is explained in the Appendix (Sec. A.1.2). Fig-
ure 2.1 illustrates how the drag coefficient of a sphere varies with Reynolds number.? The
Reynolds number (R4) is a dimensionless quantity defined by

R4 =V—l? (2.12)

where Ry = Reynolds number
v = velocity of the sphere
D = diameter of the sphere
v = kinematic viscosity of the air

Figure 2.2 shows the Reynolds number as a function of velocity and characteristic dimen-
sion (diameter for a sphere, length of side for a square plate, etc.). The characteristic dimen-
sion is read directly in inches; whereas, velocity is read directly only if the kinematic viscosity
of the air is 0.000179 ft®/sec. This value was chosen because it represents the average kine-
matic viscosity at 5300 ft above sea level,3 the approximate altitude of the southeast section of
Albuquerque, N. Mex., where the experiments were performed. If the kinematic viscosity has
any other value, the velocity variable must be modified by the appropriate factor, as indicated
in Fig. 2.2, to convert it to its true velocity. If the velocity, diameter of a sphere, and the kine-
matic viscosity of the surrounding medium are known, Fig. 2.2 can be used to find the Reynolds
number. Then for that Reynolds number, the corresponding drag coefficient can be determined
with the aid of Fig. 2.1.

2.3 EQUATIONS FOR CONSTANT «

If @ is assumed to be constant throughout a fall; if the initial conditions are vy =hy; = t; = 0;
and if vy =V, hy = H, and t, = T (see Appendix, Sec. A.1.1), Eqs. A.3 and A.5 become

V = (2gH) * [(1 - e~ PoH) [poH] (2.13)
and

T = [(2H/g) " (paH) %/2] + (2H/g)"% (paH) % In[1 + (1 — e~ P*H)%] (2.14)
An alternative way of writing Eq. 2.14 is

T= (2H/g)l’/2 (paH)‘yz cosh™! ¢ P¥H/2 (2.15)

An explicit solution of Eq. 2.13 for « in terms of V and H was not possible; however, for a
fixed value of H, V can be plotted as a function of @. Such a plot, illustrated in Fig. 2.3, was
found to be useful in a previous study of the impact loading of small anesthetized laboratory
animals? in which impact velocity was determined by means of high-speed photography. The
experimental data shown on this chart (Fig. 2.3), however, were determined in the present
study (Sec. 4.5).

Acceleration as a function of height of fall can be found by substituting V from Eq. 2.13
into Eq. 2.5 to give

a=gePH (2.16)
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2.4 EQUATIONS WITHOUT DRAG *

The equations for free fall with no-drag force and initial conditions V=H =0 when T=0

are
aNnp = §
Vnp =8Txp
and
H =g (Typ)"/2
Equation 2.19 can be solved for T to give
Typ = (2H/g)"
Substituting T from Eq. 2.20 into Eq. 2.18 gives

Vyp = (2gH)%

2.5 COMPARISON OF EQUATIONS OF MOTION WITH AND WITHOUT DRAG
A summary of the preceding equations is given here:
For any initial conditions:

(a) With drag (for constant a)

(b) No drag

For initial conditions v =h =0 when t = 0:
(a) With drag (for constant o)
Vv = (2gH)% [(1 - e 1) JpoH]"

a=ge PH

T = [(2H/g)% (pal)%/2] + (2H/gM* (paH)™ In[1+ (1 e P*H)%]
(b) No drag

Vap = (2gH)"
ND T8

Typ = (2H/g)"

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.5)

(2.17)

(2.13)
(2.16)

(2.14)

(2.21)
(2.17)

(2.20)

*The subscript ND is used to indicate the no-drag value of the parameter; i.e., Tnp is

the time an object would take to fall, assuming the object did not experience drag force.
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For the initial conditions v =h = 0 when t = 0, the quantities with drag are arranged so
that they differ from those without drag by a factor that is a function of the dimensionless
quantity paH.

Figure 2.4 shows these results in a different form. Theta (6) is defined as the ratio of a
variable (V, T, or a)-with drag to the same variable without drag and is a dimensionless
quantity expressed as a function of the paH. For example, 8y is the final or impact velocity
divided by the velocity for a drop with no drag. The final or impact velocity can be computed
from Fig. 2.4 and measured values of H, g, and T (assuming «, g, and p are constant). This
calculation can be made by computing Tnp and 61 and then using the 6 curve to determine
paH. For that value of paH, 6y is then read and multiplied by the computed value of Vyp to
determine the impact velocity. If the values for p and @ are known and H is measured, 6 and
9y can be read directly from Fig. 2.4.

The dotted curves in Fig. 2.4, which are approximations to the solid curves, are good over
certain ranges of paH and are useful to simplify computations. They were computed from the

following equations:
6% = [(paH)"/2] + (paH)" #1n 2 2.22
T pa ]+ (pa n (2.22)
and

64 = (paH) ™" (2.23)

These approximate relations depend upon the fact that Pl g very fast as paH — . Hence

zero was substituted for e=P%H in the equations for 6T and 6y (Fig. 2.4) to arrive at the ap-
proximations. Using Eq. A.16 from the Appendix (Sec. A.2) and the definition v =V/VNp, one
can write

V/Vy = 0y (2gH)* (2g/pa)
=0y (paH)” = 0/} (2.24)

where V¢ is the terminal or limiting velocity as paH — «. Thus the convergence of 65 to Oy
indicates V — Vi or the approach of the velocity of an object to terminal velocity as the
height of fall increases. Another approximation to 6,

r =1+ (paH/12) (2.25)
for low values of paH was found by expanding 6 in a Maclaurin’s series as follows:

or(paH) =6t |o+ do/d(paH) o (caH) + d*67/d(paH)? | (oaH)?/21+ ...
=1+ (paH/12) + (paH)?/480 + . .. (2.26)

The approximation shown by Eq. 2.25 is then the first two terms of the Maclaurin’s series for
9T(paH).

Although impact velocity can be computed from height of fall with Fig. 2.4, as described
in the preceding paragraphs, Fig. 2.5 represents a simpler way to accomplish the same thing.
It is especially useful if g = 32.174 ft/sec?, in which case, V, T, and H can be read directly.
This value for g was chosen because it represents the acceleration of gravity5 at sea level. If
the acceleration of gravity has any other value, the velocity and time variables must be modi-
fied by the appropriate factors, as indicated in Fig. 2.5, to convert them to actual velocity and
time.

2.6 ESTIMATIONS OF ERRORS

To estimate the percentage of error in computed impact velocity (V) introduced by a
timing error (6T), the following equation was used:
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100AV/V =100(AV/AT)(1/V) AT = 100(a/V) 6T (2.27)
Substituting for a and V from Egs. 2.16, 2.13, and 2.20 in Eq. 2.27 gives

! -1
100AV/V = [(paH) % e=P@H (1 — eP*H )] 1006T/Typ
=Ry - 1005T/Txp (2.28)

where Ry is the dimensionless quantity in brackets. Figure 2.6 is a plot of Ry vs. paH. To
find the estimated percentage of error in computed impact velocity due to error in measured
time of fall, determine Ry from Fig. 2.6 and use this value in Eq. 2.28. It is interesting to
note that 100AV/V <1008T/Tnp for all values of paH; indeed, by substituting

Txp = T{[(paH)l/z/Z] + (pazH)'l/2 In[1+(1-¢ PozH)‘/z]—i}

from Eqs. 2.14 and 2.20 into Eq. 2.28, it can be shown that AV /V <8T/T for all values of paH.
Thus impact velocity can be determined with greater accuracy, percentagewise, than the
measurement of time of drop from which it is computed.

A similar procedure was used to estimate the percentage of error in computed a intro-
duced by a timing error 6T.

-1
100Aa/a = 100(Aa/AT)1/a)AT = 100 (Ed—:—! a) 6T (2.29)

Differentiate Eq. 2.14 with respect to o and substitute in Eq. 2.29 to obtain

10080/ = 2{[(paH)%/2] - (paH) ™% In [1 + (1 — e™P2H)%] + (paH)* e=paH[(1 — e-paH)
+(1— e PUEYA I 1006T /Ty
=R, 1006T/TxD (2.30)

where the dimensionless quantity in braces is given the symbol Rg.

Figure 2.7 is a plot of Rq vs. paH. To find the estimated percentage of error in com-
puted @ resulting from error in measured time of fall, determine R, from Fig. 2.7 and use
this value in Eq. 2.30. The two dashed curves are reasonable approximations to the solid
curve over certain ranges of paH. The R/, approximation was formed in the same way the 01
and 0% approximations were formed (Egs. 2.22 and 2.23). The R{, approximation for low
values of paH was obtained by differentiating Eq. 2.25 and substituting it into Eq. 2.29 to obtain

R’, = 12/paH (2.31)

Equation 2.31 was used to approximate the timing accuracy needed for the experiment,
where p ~ 0.06 lb/fta, H =~ 50 ft, g ~ 32 ft/sec?, and a ~ 0.03 ft% 1b. Since the timing require-
ment is greatest for low values of ¢, the value used in this report was the lowest one antici-
pated for the objects to be dropped. From Eq. 2.31, R, =~ 12/paH =12/0.09. If this value of
R, is used for the quantity in braces in Eq. 2.30,

100Aa/a = (12/0.09)1005T[2(50)/32] % ~ 75006T
Thus, if T = 0.2 msec, then 100Aa/a =~ 1.5 per cent. Therefore to limit the error in com-

puted « to about 1 per cent, the timing mechanism would need to determine the drop time to
the nearest 0.1 msec.
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Fig. 2.3— Impact velocity vs. height of fall and . Included in the figure are the animal data from the
present report showing mean values (represented by o) and standard deviations (represented by <)

of the experimentally determined a.
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Fig. 2.7— Method for estimating error in computed a resulting from error in measured time of fall.
Find R, from curve and percentage of error in o from equation shown.
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Chapter 3

EXPERIMENTAL PROCEDURE

The experimental system used to measure the time required for various objects to fall a
measured distance is shown diagrammatically in Fig. 3.1. The object to be dropped was placed
near the end of a bar that was designed to swing about its mid-point (see drop device in upper
right of Fig. 3.1). The drops were initiated manually by tripping the catch shown just left of
the microswitch. This action allowed a helical spring to rotate the bar about its mid-point. -As
the bar began to move, the test object was left free to fall; and, at the same time, the micro-
switch was activated, starting an electronic timer (Hewlett Packard Electronic Counter, model
522-B). At the termination of the fall, the test object struck an aluminum plate, creating a
noise, which was detected by a contact microphone placed on the underside of the impact plate.
The signal from the microphone then stopped the electronic timer.

Figure 3.2 is a picture of the drop apparatus and a close-up view of the release mecha-
nism. The dropping bar, supported on both sides by vertical members, was made thin (3} in.)
to minimize air disturbance during release of the test object. Plates of various sizes were
made to be attached to the right end of the dropping bar, whose total length was 32 in., so that
objects as large as a rabbit could be conveniently dropped. A helical spring, hidden from view
by the vertical support, was designed to ensure that the downward acceleration of the right
side of the bar would be greater than the acceleration of gravity. After the bar moved approxi-
mately 90°, its energy was partially dissipated by impact with a small pad of Ensolite (a
product of the U. S. Rubber Co.) placed between the upright supports; thus rebound was less-
ened, preventing interference of the bar with the falling object.

It was necessary to pay particular attention to the design and construction of the release
mechanism. If any motion had been imparted to the dropping bar during the process of release,
then the times of drop would not have been reproducible. Therefore, the sliding parts of the
latch were made of blocks of tool steel, precision ground and clamped at the ends of the drop-
ping bar; and the vertical bar, shown on the left side of Fig. 3.2, was designed to pivot about a
point near the base of the apparatus. Even after taking these precautions in design, it was
found that more reproducible times of drop could be obtained if the catch were released slowly
by means of the knurled nut shown at the left in Fig. 3.2, thus minimizing motion induced in
the dropping bar.

Tests were conducted in an elevator shaft in which objects were dropped 48.372 ft. Pre-
cautions were taken to minimize vertical air currents by keeping all access doors to the shaft
closed.

The impact plate shown schematically in Fig. 3.1 consisted of a 1/4—in.—thick 2-ft? alumi-
num plate. The plate was fastened to a table-like support about 6 in. high made of %—in. -thick
plywood in which a hole was made in the center to accommodate the contact microphone. It is
pertinent to note that the impact plate made a relatively small target for irregular objects
dropping 48 ft. Occasional “misses’ were experienced, especially by the smaller asymmetri-
cal objects. Plate-like objects dropped flat also tended to veer away from the impact plate if

30




a small degree of rotation occurred. Surprisingly enough, the release operator could usually
observe the object’s fall well enough to detect the presence or absence of rotation. Thus the
data included in this report are for objects that had little or no rotation while falling.

ELECTRONIC __
TIMER
STOP STAgT MICROSWITCH OBJECT TO
\ /Q/BE DROPPED
5.C.
AMPLIFIER SOURCE

I

ALUMINUM
PLATE

CONTACT
MICROPHONE

Fig. 3.1— Block diagram of the drop-test equipment showing release apparatus and starting
and stopping circuits.
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Chapter 4

ANALYSIS OF DATA

4.1 CONSTANTS FOR THE DROP TESTS
The constants for the drop tests were
g = 32.126 ft/sec?
H =48.372 ft
p = 0.060437 b/ft®
v = 0.0002071 ft?/sec
The value of g was obtained from the Coast and Geodetic Survey, Department of Com-

merce.! H was measured directly; whereas, p and v were computed by measuring the air
pressure and temperature and substituting them in the following derived equatlons

b\ 2.6954 p, (psi)
<ft3) 459.69 + t(°F) (4.1)

(ft2 ) 2.7803 (10)~" [456.69 + t(° F)]” (4.2)
sec Do (psi) [675.69 + t('F)] )

Since the drop tests were conducted over a period of three days, the above values of p
and v are averages; however, the deviations about these average values from day to day were
small, the range in both cases being less than 1 per cent.

4.2 TIME CORRECTIONS

Steel spheres, s and 3/13 in. in diameter, were dropped during each of the three days when
drop tests were conducted. Although the drop times for a particular sphere on a given day
were quite consistent (low standard error), the mean drop time varied significantly from day
to day. Since the air density remained nearly constant, the differences were probably due to
minor adjustments that had been made on the microswitch and the release apparatus between
daily tests.

The circumstance stated above pointed to the need for accurately computed drop times
for the two “calibration” spheres in order to determine the timing deviations inherent in the
experimental equipment. This was accomplished by the stepwise integration of Egs. 2.10 and
2.11, the height of drop and time of drop being computed for small steps in velocity for which
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Cp (and thus @) could be considered to have a constant value (see Fig. 2.1). Thus the following
values were computed for time above no-drag time (AT): For a 3/16-in. -diameter steel sphere,
AT = 35.05 msec; and for a /jg-in. -diameter steel sphere, AT = 14.91 msec.

These values, when compared to the measured times of drop, indicated that the timing
error for each day was essentially the same for the two spheres. The average corrections to
be added to the measured times of fall were calculated to be: first day, +3.45 msec; second
day, —0.14 msec; and third day, —1.65 msec.

In addition to these corrections, another correction was needed for the tests when heavy
objects were dropped on a pad of Ensolite. This 1-in.-thick pad was used on the third day to
help protect the contact microphone. Several spheres were dropped both with and without the
pad. The differences in times of fall produced by the pad were plotted against the uncorrected
times of fall with the pad. The points indicated a linear relation. This correction was then
combined with the constant correction previously determined for the third day to give a total
time correction (Fig. 4.1).

4.3 DATA FOR SPHERES, STONES, AND MILITARY DEBRIS

4.3.1 Introductory Remarks

It was implied in Sec. 4.2 that to determine an accurate time of drop relation for spheres,
it was necessary to allow for a varying o dependent on the Reynolds number, which changes
throughout the fall. If this were true for irregular objects, then the drop-test technique would
be doomed to failure since the relation between drag coefficient and Reynolds number is not
known for objects of interest to this study. In this section it will be shown that the dependence
of @ upon Reynolds number for irregular stones is evidently quite different from that for
spheres. This difference makes it reasonable to assume for experimental purposes that a for
stones can be considered to be constant for the entire drop interval.

4.3.2 Sphere Data

First, it will be necessary to examine the test data for the spheres. Figure 4.2 shows a
plot of “theoretical” ¢ (based on Cp = 0.47) for spheres vs. measured time of drop in excess
of the no-drag time. The curve shown was computed assuming a constant o by using Eq. 2.14.
For most of the spheres, the times measured were either too low or too high when compared
to the constant a curve. An examination of the lower curve in Fig. 4.3 will help explain those
deviations. Marked on this chart are the Reynolds numbers computed for the final or impact
velocities for various spheres. The position of the Y-in.-diameter steel sphere, for instance,
indicates that high drag coefficients existed for a large percentage of the fall. The effect of
this was that the measured time of drop was longer than that expected assuming a constant
drag coefficient of 0.47 (Fig. 4.2). Times for the Y4-in.-diameter steel spheres, on the other
hand, corresponded reasonably well with the constant @ assumption. Undoubtedly the reason
for this was that the effect of the initially high drag coefficients were compensated for by co-
efficients lower than 0.47 near the termination of the drop® (Fig. 4.3). For spheres still larger
in diameter (e.g., 3/;-in.-diameter aluminum spheres), the drop times were less than expected
since a larger percyentage of the drop-interval involved low drag coefficients (Fig. 4.3). The
sphere drop involving the highest Reynolds numbers was that of a 3.34-in.-diameter croquet
ball whose weight had been increased with a brass plug. In this instance a large portion of the
drop entailed drag coefficients whose values were near 0.47. Thus the measured drop time
corresponded closely to that expected for a constant coefficient of this value. It is interesting
to note that the “effective” drag coefficient for the entire drop interval can be approximated in
each individual instance by the coefficient corresponding to one-half the Reynolds number.

4.3.3 Stones Compared to Spheres

To study the differences in the Reynolds number —drag relation between spheres and
irregular objects, it was necessary to analyze the two groups of data similarly. This involved
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computing effective « for each sphere drop, assuming that the drag coefficient was constant for
the entire drop (Eq. 2.14). The o values so computed were then plotted as a function of sphere
mass, as illustrated in Fig. 4.4. If the drag coefficient is assumed to be constant, it can be
shown that « for spheres of a constant density varies inversely as mass to the 1/3 power. Thus,
if the drag coefficient had the same constant value for all sizes of like-density spheres, the
least-squares regression lines shown in Fig. 4.4 would have slopes of —1/3. Deviations from
this value indicate that the smaller spheres had effective drag coefficients somewhat greater
than those for the larger spheres.

Statistical data pertinent to the slopes of the least-squares regression lines for spheres
and stones are recorded in Table 4.1. In addition to the slopes, the standard deviations of the
slopes were computed; and from these data the probability (pr) that the measured slopes could
have been deviations from the “true” slope of —1/3 was computed. Although the probabilities for
the individual cases varied considerably, that for a combination of all spheres proved to be only
0.034. Stated in physical terms, the Reynolds number —drag relation for spheres is such that,
for the purposes of the present study, the effective drag coefficient varies from one size sphere
to another.

Table 4.1 also presents the results of a similar statistical treatment for six types of ir-
regular stones. With one exception, pumice, the probabilities that the measured slopes could
have been deviations from the “true” slope of —1/3 were quite high. This finding indicated that
the computed slopes are likely to be random variations from the true slope. The variation of
the pumice data from the ——1/3 slope was probably due to the absorption of moisture from the
air in the outer layer. If this layer were of uniform thickness, the smaller stones would suffer
a larger relative increase in weight than would the larger stones.

4.3.4 Stone Data

The reasoning presented above seemed to justify a constant-a assumption. The o values
for individual objects were, therefore, determined graphically from a curve of a vs. AT similar
to that shown in Fig. 4.2.

Figure 4.5 is a plot of experimentally determined o for 41 pieces of painted gravel as a
function of mass. These stones were taken from a sample of stones that was marked for identi-
fication and used in secondary-missile experiments in Nevada during the Operation Plumbbob
weapons tests. Since the stones actually used in these experiments had masses less than 1500
mg, a separate analysis was made for these. In addition, another analysis was made for all
stones, assuming a slope of the least-squares regression line of —1/3 (Sec. 4.3.3). The results
of both analyses are shown in Fig. 4.5.

Drop tests were made with limestone fragments so that there could be a comparison of the
results with stones whose densities were less uniform. The slope of the least-squares regres-
sion line determined for these data (Fig. 4.8) is reasonably near the expected value of — Y.

The data shown in Figs. 4.7, 4.8, and 4.9 are for stones obtained at three different loca-
tions (10P4, 1S1A, and 4.3 GTS) at NTS during Operation Plumbbob.* An analysis was made of
the combined data for stones at the 10P4 and 1S1A locations because the individual analyses
were remarkably similar.

Figure 4.10 contains the data for the pumice fragments that were discussed in Sec. 4.3.3.
The least-squares regression lines for all the stone data are displayed in Fig. 4.11. An exami-
nation of this figure points to the similarity between pumice and stones at the 4.3 GTS location,
both having higher a for given stone masses than the other samples.

4.3.5 Military-debris Data

The military debris used in the drop tests consisted of steel shrapnel and a few other ir-
regular pieces of steel, all of which had been used and recovered as secondary missiles in the
Operation Plumbbob study.4 The a-mass data for these steel fragments are shown in Fig.

4.12. For comparison purposes, the theoretical a¢-mass relation for steel spheres, assuming
Cp = 0.47, is shown on the same chart. It is apparent and reasonable that, for a given mass, a
fragment of steel has a much larger o than does a steel sphere. The slope of the least-squares
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regression line is less than that for the theoretical line for spheres; however, it is not as flat
as a line for plates (Sec. 4.4).

4.4 DATA FOR PLATES, CUBES, AND GLASS FRAGMENTS

4.4.1 Introductory Remarks

Drag properties of window- and plate-glass fragments were of interest to this study be-
cause they constitute biological hazards when hurled through the air by the action of a blast
wave on a structure containing windows.* Regular plates and cubes were studied only for the
purpose of better interpretation of the glass-fragment data obtained in full-scale nuclear tests.

4.4.2 Regular Plates and Cubes

It should be pointed out that the plates referred to in this study are really “thick” plates,
i.e., no attempt was made to sharpen the edges in order to achieve the “thin” plate that is
usually used in wind-tunnel studies. For this reason the Reynolds number—drag relation
shown in the upper part of Fig. 4.3 does not strictly apply to the experimental data reported
here. However, it is useful to note in Fig. 4.3 that within the region of interest the variation in
drag coefficient is less than 5 per cent (from 1.13 at R4=2 x 10% to 1.17 at Rq = 8 x 10%).

Figure 4.13 presents drag coefficients for regular plates in normal flow determined from
drop-test data, assuming that o was constant throughout the fall. If the plates used had been
thin plates, those with the smallest area could have been expected to have the highest drag
coefficients (Fig. 4.3). Since the reverse was true, it can be concluded that the thickness effect
must outweigh the effect of Reynolds number. It is interesting to note that no difference in Cp -
could be detected between plates that were square, circular, or triangular (equilateral).

Similar data are presented in Fig. 4.14 for cubes made of various materials. Although a
considerable change in terminal Reynolds number from the smallest to the largest cubes was
noticed, no significant trend in the drag coefficient data was apparent.

With information obtained from the same drop tests for cubes, o was plotted as a function
of the length of the cube on logarithmic paper (Fig. 4.15). If drag coefficient were constant,
then the following relation can be stated for cubes made of material of constant density:

a ~ (s/M) ~ (length of side)!. Thus a comparison of the data points in Fig. 4.15 to the lines
drawn with a slope of —1 indicate the degree to which drag coefficient is constant for the
different types of cubes.

4.4.3 Data for Glass Fragments

Two types of glass fragments were used in this study: those originating from window
panes (0.125 in. thick) and those from plate-glass panes (0.225 in. thick). Figure 4.16 illus-
trates the random shapes of typical window-glass fragments. The number appearing with each
fragment indicates its mass in grams.

Drop times obtained for 380 window-glass fragments were used to determine individual a
by the method previously described, assuming constant & throughout the fall. When «a was
plotted as a function of mass on logarithmic paper, it was apparent that the points tended to
form not one, but several line segments. The following procedure was used to determine the
mass boundaries for each line segment. The data were divided into small mass groups, and
the mean « and standard deviation in @ were determined for each group. These data were
plotted as illustrated in Fig. 4.17. The mass limits for each line segment were then estimated,
and these limits used to determine the least-squares regression equations for each segment.
These segments are shown in Fig. 4.18, along with the data points used in their determination.
Because the smaller fragments were approximately spherical, the regression line for them
was given a theoretical slope of —1/3 (Sec. 4.3.3). Another group of window glass was dropped
edgewise (shown as triangles in Fig. 4.18). The regression line for these data passed near the
intersection of the first two segments. For the sake of simplicity, another regression line
was computed for the data, with the requirement that it pass through the intersection of the
first two segments. The standard error of estimate was increased very little by this procedure.
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Alpha data for plate glass (9.225 in. thick) dropped flat are presented in Fig. 4.19. It is
interesting to note that a larger scatter is shown in the data for small fragments than for large.
This, no doubt, can be attributed to the greater mechanical stability during fall of large plates
than of small ones. This scatter also was observed at the time of the experiments. The same
distribution of scatter can be detected in the data for window glass dropped flat as illustrated
in Fig. 4.18.

A summary of all glass-fragment data is shown in Fig. 4.20. The data represented by line
segment 1 for the smaller fragments can be used for either plate or window glass in any
orientation since the fragments were small enough that their flat dimensions were not ap-
preciably different from their thickness dimensions. Thus for plate glass line segment 1 was
extended to higher masses until it intersected line segment 6 for plate-glass fragments dropped
flat. This extension was possible because the densities of the window and plate glass were the
same.

4.4.4 Analysis for Thick Plates of Random Shape

The purpose of this section is to derive relations that make it possible to determine drag
coefficient (and thus «) for plates of any thickness and presenting area within the limits of the
experimental data. The results apply to plates of random shapes such as those which have
been described (see Fig. 4.16). The assumption is made, and verified by the experimental
data, that plates with the same characteristic length-to-thickness ratio have the same drag
coefficient, at least for the experimental conditions being considered here.

The characteristic length of a plate of random shape was taken to be the length of a side of
a square plate of an equivalent area, i.e., the square root of the area.

It has been shown (see Figs. 4.19 and 4.20) for wide ranges of masses and for plates of
constant thickness and density that the relation between the acceleration coefficient and mass
can be expressed by an equation of the form

log ag =J + B log m, (4.3)

where J and B are constants. With this expression, the relation between Cp and s%/t, where s
represents the area of a plate in normal flow and t represents its thickness, can be determined.

The subscript zero is used to designate the parameters of the plates used in this study.
The same terms without subscripts represent quantities that can vary between limits deter-
mined by the experimental data. Thus @, the acceleration coefficient, may be defined as o =
s,CD/m, and a = sCp/m (Sec. 2.2), where the drag coefficients (Cp) are identical for the con-
dition that s¢%/t, = s%/t. For each value of s%/t and, therefore, for each value of Cp, it can be
stated that s = kitzp, Sy = klt[z)po, m = k2t3p, and m; = kgtgpo, where k; and k, are constants, t is
the thickness of the plate, and p is the density of the material from which the plate is made. If
these relations are used, the following equations can be derived: mg = mpo(to/t)3 and oy =
a(pt/poty). By the use of these equations to eliminate m, and ¢, from Eq. 4.3, the following
equation is obtained:

log [a(tp/topo)] = J + B log [m(te/t)* (py/p)] (4.4)
Since m = tps and o = sCp/m, Eq. 4.4 can be reduced to
log (Cp/type) = J + B log [peth(s /)’ ] (4.5)

Since t, and p, were assumed to have constant values in the analysis expressed by Eq. 4.3,
Eq. 4.5 can be simplified to

log Cp =K; + K, log (s y’/t) (4.6)

where K, and K, are constants. Thus log Cp is a linear function of log sl/z/t if log o can be
assumed to be a linear function of log m (Eq. 4.3).
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To verify the relation derived above, a plot was made of Cp vs. sl/z/t, using all the data
for plates obtained in this study. Figure 4.21 shows this plot, along with the results of a least-
squares regression analysis. The data presented here are for 40 regular plates, referred to
in Fig. 4.13, and 77 irregular plates, referred to in line segments 4 and 6 in Fig. 4.20. It is
instructive to note that the drag coefficients for regular plates tend to be slightly higher than
those for the irregular ones. Nevertheless, the standard error of estimate in Cp for all plates
was only approximately 5.6 per cent, being between that for window-glass fragments (3.4 per
cent) and that for plate-glass fragments (7.8 per cent). The areas for both types of glass
fragments were computed from mass, thickness, and the measured glass density (39.657 g/in.s).

4.5 SMALL-ANIMAL DATA

Six mice, six rats, six guinea pigs, and five rabbits were dropped during these tests. The
animals, which had been given lethal doses of Nembutal before the drops, were dropped as
many as five times each.

The animals were dropped in two different initial orientations: first, with one side toward
the direction of fall (lateral) and, second, with the abdomen toward the direction of fall (ven-
tral). Figure 4.22 is a photograph of the presented areas of a few of the animals in these
positions. The areas of most of the animals were measured from similar photographs and are
recorded in Fig. 4.23, with circles representing the lateral areas and squares representing
the ventral areas. The straight line on this plot has a slope of %%. It tends to show that, at
least for the mice, rats, and guinea pigs, the area is proportional to the mass to the 2/3 power
(see Ref. 5). It should be remembered that, although the animals tended to hold their initial
orientations as they fell, the areas on Fig. 4.23 are larger than those “seen” by the wind since
the hair tends to lie close to the body as the animal falls.

Figure 4.24 is a plot of the experimentally determined « as a function of mass; the circles
represent the @ of animals dropped laterally and the squares represent the o of animals
dropped ventrally. The regression line was computed using all the points. The slope of —0.3240
is near the theoretical slope of —%, which was determined by assuming a constant density and
a constant drag coefficient for any group of similar objects (see Secs. 4.3.3 and 4.3.4).

Figure 2.3 shows the impact velocity as a function of drop height and «. The « values,
determined experimentally from the animal data, are plotted on the theoretical line for the
actual height of drop. In addition, the means and standard deviations of the experimentally de-
termined o are tabulated in Fig. 4.24. They are shown in Fig. 2.3 and can be used to estimate
the means and standard deviations of the impact velocities of the various animals.

4.6 DRAG PROPERTIES FOR MAN

The least-squares regression line in Fig. 4.24 can be extrapolated up to a mass of 168 1b
(75,977 g) to give an estimation of the @ for man (0.0269 1t2/1b).

The extrapolated value for the o for man was compared to Schmitt’s report on wind-
tunnel investigations of air loads on human beings® whose average weight was 168 lb. The data
from this report were used to compute and average the « for a group of eight nude men in the
lateral and ventral positions. A value of 0.0336 ftz/lb was obtained. This value is higher than
the 0.0269 ftz/lb obtained from the extrapolation of the animal data, but this can be explained if
the fact is taken into consideration that the animals tested were much more spherically shaped
than man and thus have a lower « for the maximum presented-area position.

Another way to estimate the a of man is by the concept of the total surface area. For a
sphere the total surface area is 47r? and the average presented area is 7r?. For a cube the
total surface area is six times the area of one face, and the average presented area of a cube
in random orientation is % times the area of one face.” The ratio of the average presented
area to the total surface area is (rr?/4nr?) sphere = Y, and [(34)/6] cube = Y.

In general, if an object has no cavities (ellipsoid, cube, etc.), its average presented area
in random orientation is one-fourth the total surface area (see Appendix, Sec. A.3, for proof).
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Since a man does have concavities, it is not actually the total surface area that should be con-
sidered, but rather an effective surface area.

Bohnenkamp’s work with effective radiating surface area of an erect man has shown this
area to be from 83 to 85 per cent of the total surface area.’ The total surface area can be ob-
tained from various sources,f‘“B but for this study the figures given in the Schmitt report6 were
used (an average of 20.7525 £t? total surface area and 167.5 Ib weight). With these data the
average value of s/m was found to be 1/ x 84% x (20.7525 £t2/167.5 1b) = 0.0260 ft?/Ib. 1If Cp is
assumed to be equal to unity, this figure (0.0260 ft?/1b) can be compared to the extrapolated
value for o of 0.0269 ft?/Ib (Fig. 4.24).

The o values derived from the Schmitt report for various orientations of the men relative
to the wind were used to calculate the average « for a rigid, clothed man, giving a value of
0.0281 ft*/Ib (see Appendix, Sec. A.4). The average drag coefficient for a rigid, clothed man
would then be the average a divided by the average s/m, or 0.0281/0.0260 = 1.08. This value
compares very well with the approximate values listed by Hoerner,10 which include drag coeffi-
cients of 1.0 for a parachutist in free fall, 1.0 for a ski runner on a slope, and 1.2 for a ski
jumper in air. It should be remembered that the average a of man would be lowered if those
positions where a man is doubled up, instead of being rigid, were also considered.
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Fig. 4.15—Alpha (computed from the times of fall) of cubes vs. length of side of cubes. The lines

through the points have the theoretical slope of minus one.
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Fig. 4.16—Front views of some of the larger pieces of window glass (0.125 in. thick) used in drop-tests.
Numbers indicate masses in grams.
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LATERAL POSITION VENTRAL POSITION

INCHES 1 2 3

INCHES 1 2 3

MOUSE 22.45¢

o

INCHES 1t 2 3 4 5

RAT 192 g

INCHES 1 INCHES 1

GUINEA PIG 467 ¢

.
3

RABBIT 1829 g

Fig. 4.22 —Silhouette photographs of some of the animals used in the drop tests. The areas of the animals in the

lateral and ventral positions were determined from full-scale photographs of this type.
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Chapter 5

SUMMARY

The purpose of this study was to determine certain aerodynamic-drag parameters of small
irregular objects, such as window-glass fragments, stones, steel fragments, and small labora-
tory animals. The drag parameters of interest were those necessary for the computation of the
velocity vs. time history of the object when exposed to the winds associated with nuclear-
produced blast waves.! These parameters were combined into one guantity called the accelera-~
tion coefficient (@) and defined as the product of the area presented to the wind and the drag
coefficient divided by the mass.

The experimental method used to determine & was to measure the time required for a test
object to free fall a given distance. To relate a to drop time, it was necessary to assume that,
first, the drag coefficient and, second, the area normal to the object’s motion were both con-
stant throughout the fall; i.e., @ was constant. Experimentally, the second condition was not
difficult to satisfy since this only required that the object not rotate. It is well known that the
drag coefficient varies with wind speed; however, it was shown from the experimental results
that the error introduced in the measurement of o by assuming that the drag coefficient was
constant was not significant, at least in so far as irregular objects were concerned. The follow-
ing derived relation was used to determine « from measured drop time:

1
T = (2H/g)" (paH)'l/z cosh™! ePaH/2

where T = drop time
g = acceleration of gravity (assumed constant)
H = height of drop
p = air density (assumed constant)
a = acceleration coefficient (assumed constant)

The equipment used in the experiment consisted of a mechanism that would simultaneously
drop the test object and start an electronic timer, an impact plate, and a contact microphone
attached to the lower side of the impact plate. When the test object made contact with the plate,
an electrical signal from the contact microphone stopped the timer.

The dropping technique as used in these experiments, was explored by dropping several
types of regular objects (spheres, cubes, and plates); the results obtained were compared with
those obtained using other techniques. The results are presented in this report for irregular
objects. The drop times for two types of spheres were also used to check the experimental
equipment for consistency of operation at various times during the drop tests.

Several types of stones were used as test objects. Most of the stones had been used at the
NTS to study the production of secondary missiles by blast winds produced by nuclear explo-
sions.®® From 29 to 45 stones of each type were dropped, and o was determined for each. The
results were analyzed by regression analyses to determine « for each type of stone, and the
results are listed below. The units for a are ft?/lb and for mass (m), mg. Sigma (o) is used to
designate the standard error of estimate in log units.
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Gravel (painted):

log o = 0.57610 — 0.38803 log m
30 <m < 1500 o =0.07463

Limestone fragments:

log o = 0.49926 — 0.32159 log m
130 < m < 15,000 o =0.08811

Natural stones® from NTS at location 10P4:

log o = 0.48759 — 0.32835 log m
11 <m < 4100 o =0.07063

Natural stones® from NTS at location 1S1a:

log @ = 0.45171 — 0.31263 log m
17<m< 7100 o =0.08684

Natural stones® from NTS at location 4.3 GTS:

log @ = 0.73833 — 0.30758 log m
11 <m < 2300 c=0.1294

Pumice fragments:

log @ = 0.63748 — 0.25466 log m
18 < m < 2300 o = 0.08948

Fragments of steel (mostly shrapnel) were also used as test objects, and the results were
analyzed in a manner similar to that described for stones. The resulting regression equation
was

log o =—0.74223 — 0.11315 log (m/1000)
4500 < m < 150,000 o = 0.09974

Fragments of ordinary window glass 0.125 in. thick were dropped, both with a plane sur-
face down and edge-on, to determine the maximum and minimum ¢ as a function of mass. In
addition, plate-glass fragments 0.225 in. thick were dropped with the plane surface down. For
small fragments the o values determined were independent of both orientation and type of glass
(ordinary window glass or plate glass). It was found that the relation between o and mass
could be represented as a straight line on logarithmic paper, but only for definite mass in-
tervals. The regression equations derived from the experimental data are given below (n
represents the number of fragments dropped; the remaining nomenclature is the same as that
used previously).

Window glass and plate glass dropped flat or edgewise for 10 < m < 220:

log @ = 0.55659 — (1/3) log m
n =155 o =0.09014
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Window glass dropped flat for 220 < m < 1270:

log @ =—-0.13874 — 0.036374 log m
n=81 o =0.06348

Window glass dropped flat for 1270 < m < 1574:

log @ =—3.02323 +0.89295 log m
n=10 o = 0.04525

Window glass dropped flat for 1574 < m < 10°%:

log a =-0.28024 + 0.34985 log m
n =46 o= 0.01473

Window glass dropped edgewise for 220 < m < 5000:

log o = 0.12689 — 0.14982 log m
n =88 ¢=0.1013

Plate glass dropped flat for 860 < m < 3 x 10°:

log @ =0.49172 + 0.023921 log m
n =31 o =0.03416

A useful formula was derived which related drag coefficient (C p) for plates of random
shapes and finite thickness to the ratio of the square root of plate surface area (s) to thickness
(t). The drop-test data used in this analysis included that for window- and plate-glass frag-
ments dropped flat as well as that for plates of regular shapes (square, circular, triangular)
made of brass and plastic. The regression equation noted below was computed from data for
117 test objects whose shape factor (sl/z/t) varied from 2 to 65.

log Cp = 0.019445 + 0.048498 log (s"/t)
o =0.02428

(Note: s’ and t are expressed in the same units.)

Shadowgraphs were prepared for mice, rats, guinea pigs, and rabbits in ventral and lateral
positions to determine their presenting areas. In general, the areas determined (Fig. 4.23)
were proportional to the mass of animal raised to the 2/3 power. The animals were then
dropped ventrally and laterally to determine their «. It was found that there was no significant
difference in « determined for these positions. The experimentally determined ¢ values for
each animal species were:

Mice (20.44 g) 0.3769 + 0.0425 ft?/1b
Rats (184.48 g) 0.1853 + 0.0142 ft*/Ib
Guinea pigs (630.1 g)  0.1547 + 0.0196 ft*/Ib
Rabbits (2087 g) 0.0794 = 0.0155 ft?/lb

These data were used to determine « as a function of animal mass.

log & = 0.01153 — 0.32400 log (m/1000)
n = 84 o = 0.06496




An estimate of the a for a 168-Ib man was determined to be 0.0269 £t?/1b by the above
equation. Another estimate was made for the o of a 168-1b man using the results of a wind-
tunnel study reported by Schmitt.* For positions corresponding to those of the dropped animals
(ventral and lateral), an average a of 0.0336 ft*/Ib was obtained.

A method for estimating the average presenting area of any object in random orientations
was developed. It was shown that the average presenting area is one-fourth the total surface
area, provided no cavities exist. To approximate the no-cavity condition, the radiating surface
area for man was used to estimate the average o for the human subjects used in the wind-
tunnel study mentioned above. Assuming a drag coefficient of 1.0, a value of 0.0260 ftz/lb for «
was obtained. This value compared well with a value of 0.0281 ftz/lb obtained by averaging the
wind-tunnel data for men in various positions relative to the wind.
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Appendix
DERIVATION OF EQUATIONS

A.1 EQUATIONS OF MOTION
A.1.1 Integration of the Basic Equation

Equation 2.9 can be integrated

f dh = f _vdv )

(A.1)
to give
Y Y

1-w(52)"] [+ w5

h2 - h1 =—1n oo " pa :1/2 (A.Z)
1-wlgg) ] 1 vl)

Now, solving Eq. A.2 for v, gives
2g 1/2[ _pah ({3 pa)]”
v, = (pa) 1 e (1 Zg)] (A.3)

where h = hy, — h; represents the height fallen from the point where the velocity equalled v,
Substituting v, = dh/dt in Eq. A.3 and integrating from zero height of drop to h

“a= (" dh
T R T

i (A.4)
_y 2_;‘)]/

gives

tz—t1:<%)% <(pzh)%+m{l+[1_e—m 1_va0‘] I [ (ig_g)y]) (4.5)

(pah)” (pah)

Substituting h = (hy — hy) from Eq. A.2 into Eq. A.5 gives

(1) [ w(5)"]

e T )
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A.1.2 Dimensionless Analysis
Equations 2.4 and 2.8 of the text can be written in the form

dv_,_1 28 ¥D
vdh_g_Zmef<V) (A7)

where {(vD/v) = f(Rg) = Cp, the drag coefficient.

Now, g, D, and v were considered constant so that they could be placed inside the differ-
entials. Algebraic manipulations were then made on Eq. A.7 to make dimensionless quantities

as follows:
d (vD)
"f d[hgéﬂ o §[§ %(%)2] (?)2 f(?) (&.7a)

Defining Y = hg(D/v)? (distance numeric)
Z =vD/v (velocity numeric)
K = (p/g) (s/m) (v/D)* (acceleration-coefficient numeric)

as numeric parameters, the above dimensionless equation becomes

az _ . 1.
Z-gy =1-5KZ £(2) (A.8)

By basic definition, V = AH/AT or AT = AH/V, Eq. A.8 does not contain the time numeric.
However, the incremental step of time numeric, defined as AX, would be the incremental step
of distance numeric divided by the velocity number. Restated in terms of an equation, this is

_AY _Ahg(D/v)?_ D Ah D
AX—_i—_ v(D/v) TEUT gvAT

i

Thus
D . .
X = th (time numeric) (A.9)

Any previously derived equation can now be converted to the nondimensional form by re-
placing the primary parameters v, h, t, and s/m, by the numerics Z, Y, X, and K. The p, v,
and g quantities are dropped in the nondimensional form as they go into the numerics. Cp re-
mains the same in the nondimensional equations.

Equations A.2 and A.6 become

Y Y
L[t z(52) | [1+ 2(557) | (A.10)

and

(A.11)




(T = Typ) or time-of-fall minus no-drag time-of-fall parameter* (Sec. 2.5), would now be

Yo Y
T-Txp=T- (-%H) ~ X —(2Y) (A.12)

Another useful parameter (Sec. 2.5) would be

S
1 p— CpH
paH _ 2H \"2 m
T-Typ A7 Top =T () L
~X—(27)" <1 +(1:—]23KY> (A.13)

If the approximate average value of the drag coeifficient of an object is substituted for Cp
in Eq. A.13, the parameter then represents the scaled time difference between the actual time
above no-drag time and an approximation to the time above no-drag time considering the drag
coefficient to be constant at Cp. It should be noted one can go from the variable of Eq. A.13 to
that of Eq. A.12 by adding 2Y(Cp/12) KY, which is the approximation to the time of fall minus
no-drag time of fall in nondimensional form.

The no-drag equations, Egs. 2.18 and 2.19, can likewise be put in numeric form to give

Zxp = XND (A.14)
X 2
Yxp =% (A.15)

Equations A.10 and A.11 are the equations actually used to predict the accurate drop times
of two spheres (Sec. 4.2). The Cp curve was broken up into about one hundred steps over the
Reynolds-number range encountered by these spheres, and the Cp values were used to integrate
step by step to the total height of drop.

A.2 TERMINAL VELOCITY

Although not apropos of the present experiment, it should be noted that a useful relation
can be derived from Eq. 2,13. As a body falls farther and farther, its velocity tends to reach a
finite value called terminal velocity. This terminal velocity can be found from Eq. 2.13 by

R A 1—e—PaH>‘/2_(zg %
éﬂV-%{l_r}l (2¢gH) —( ol “\oa (A.16)

Figure A.1 is a plot of terminal velocity vs. a for two different conditions of p and g.
The percentage of terminal velocity reached by an object with constant « after it has fallen
a distance H can be computed from Egs. 3.13 and A.16 by

% (1 - e paH %
\4 (2gH) oH oY%
%V terminal = 100 —2ctal =100 p =100 (1 — e~PoH) (A.17)
Vierminal 2g %
(56

Figure A.2 is a plot of the above relation showing the percentage of terminal velocity as a
function of @ and H. Equation A.16 is independent of any initial conditions and represents the

*The subscript ND is used to indicate the no-drag value of a parameter; i.e., Typ is the
time an object would take to fall, assuming the object did not experience drag force.
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velocity to which the instantaneous velocity is tending at any given time; whereas, Eq. A.17
requires that the velocity be zero when the height is zero and also that p, @, and g remain
constant throughout the fall.

A.3 AVERAGE PRESENTED AREA

Consider a smooth surface, S, which has no cavities (part a, Fig. A.3); i.e., a plane that is
tangent to S at any point does not cut through the surface. Then at some point on S construct a
tangent plane that approximates S over a small area dA in the vicinity of the point of tangency.
Let N be the normal to the plane at the point of tangency, E be oriented in any reference direc-
tion fixed in space, and 9 be the angle between N and E. As N takes random orientations, not
all values of § are equally likely. To find the probability distribution of 6, one compares the
area on the surface of a sphere between 6 and @ + d4 to the total area of the sphere. That is to
say, consider a sphere whose center is always located at the point of tangency of the plane on
the smooth surfaces. Now N can intersect the sphere in any point on the sphere, and all such
points are equally likely. Then the probability that N will intersect the sphere in a specified
area of the sphere is just the ratio of this area to the total area of the sphere. In the case
under consideration, the specified area is the total area on the sphere between the angular
limits of § and ¢ + df with respect to the fixed reference direction E. This area (see part b,
Fig. A.3) is 25(r sin 6) r df; so the probability that the angle between N and E is between 9 and
6 +dg is

27(r sin 2) rdg _sinp a6 (A.18)
4gr 2

P(9) do =

The presented area in the direction of E produced by dA (part a, Fig. A.3) is

Presented area = dA cos 8 when 0 < 8 <%
- (A.19)
=0 when—§< <

For 7/2 < 6 < 7, dA could not be seen from the direction of E because it is behind S. The aver-
age presented area would then be the integral of the presented area as a function of § weighted
with the probability distribution of 8, or

m
Average presented area = f suzl o dA cos 6 db
0

_sin’ ¢
T4

da

2 (A.20)

dAT/? =

For the whole surface S, the average presented area divided by the total surface area would be

dA
— dA
Average presented area _ fs 4 _1 fs 1
Total surface area 4 4
faa 7 faa

(A.21)

A.4 AVERAGE a FOR A RIGID MAN

Two angles were used to fix the man with respect to the wind, 9 and ¢ (part ¢, Fig. A.3).
Alpha can be computed directly from Schmitt’s report! for § = 90% 0° = ¢ =< 360° (upright
position) or for 0° = § = 180°; ¢ = 90° (side to the wind). For intermediate values the following

formula was used to approximate o

[(90°, ¢) — #(0%)] [(6, 90°) — a(0")] (A.22)
a(90°,90°) — @(0°)

a(0,¢) = a(0°) +
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where a(0°) represents the o of a man head-on to the wind (6 = 0) and is the same irrespective
of ¢, similarly «(180°) represents the o of a man feet-on to the wind (8 = 180°) and also is
constant for all values of ¢. From Schmitt’s report! 9(0°) = 6(180°) for a clothed standing man
and has a value of 0.00627 ft?/Ib. Thus Eq. A.22 holds exactly for all the conditions that can be
computed directly from Schmitt’s report; i.e., substituting in Eq. A.22 the various values of §
and ¢ for which « is known, the following relations for « are obtained:

a(0%,¢) = a(0°%)
a(180° ¢) = (0%
a(90°%¢) = a(90°,¢)
(6,90°) = a(6,90°)

(A.23)

Equation A.22 was arrived at by assuming [a(6, ¢;) — @(0)]/[(6, ¢2) — a(0)] is constant for all
values of @ when ¢, and ¢, are fixed or, alternatively, by assuming [a(8y,9) — a(0%)]/[a(bs, ¢) —
@(0°)] is constant for all values of ¢ when 6, and 6§, are fixed. In connection with the first

assumption, one can write

a(6,¢) — a(0°) _ a(90°%¢) — a(0°)
(6,909 — a(0%) ~ @(90°,90°) — a(0°) (A.24)

for all values of 0 and ¢. Solving this for a(6,¢) gives Eq. A.22. The second assumption will
yield Eq. A.22 in a similar manner. Since 8 and ¢ are independent variables, the average a

would be given by

_ o, [@(90°,¢) — a(0°)][«(6,90°) — a(0%)]
a(ea ¢) - a(O ) + a(goo’QOO) — a(OO) . (A.25)

where the bars indicate average values.

The value «(6,90°) was computed by weighing @(6,90°) with the probability distribution
(sin 8/2) do (Eq. A.3) and integrating graphically from 6 = 0 to § = 7 radians. The value for
a(90°,¢) is just the average value of @(90°, ¢) with no weighing (all values of ¢ are equally
likely), and «(90°,90°) and a(0°) are particular o values computed directly from Schmitt’s re-
port. The value for a(f,¢) computed from Eq. A.25 represents the average o for a rigid,
straight man, assuming every possible orientation with respect to the wind is equally probable.
(Average a computed from Schmitt’s report is 0.0281 ft? /1b.)

REFERENCE
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CIVIL EFFECTS TEST OPERATIONS REPORT SERIES (CEX)

Through its Division of Biology and Medicine and Civil Effects Test Opera-
tions Office, the Atomic Energy Commission conducts certain technical tests,
exercises, surveys, and research directed primarily toward practical applica-
tions of nuclear effects information and toward encouraging better technical,
professional, and public understanding and utilization of the vast body of facts
useful in the design of countermeasures against weapons effects. The activities
carried out in these studies do not require nuclear detonations.

A complete listing of all the studies now underway is impossible in the
space available here. However, the following is a list of all reports available
from studies that have been completed. All reports listed are available from
the Office of Technical Services, Department of Commerce, Washington 25,

D. C., at the prices indicated.

CEX-57.1
($0.75)

CEX-58.1
($2.75)

CEX-58.2
($0.75)

CEX-58.7
($0.50)

CEX-58.8
($1.00)

CEX-58.9
($1.25)

CEX-59.1
($0.60)

CEX-59.4
($1.25)

CEX-59.13
($0.50)

The Radiological Assessment and Recovery of Contaminated
Areas, Carl F. Miller, September 1960.

Experimental Evaluation of the Radiation Protection Afforded by
Residential Structures Against Distributed Sources, J. A. Auxier,
J. O. Buchanan, C. Eisenhauer, and H. E. Menker, January 1959.

The Scattering of Thermal Radiation into Open Underground
Shelters, T. P. Davis, N. D. Miller, T. S. Ely, J. A. Basso, and
H. E. Pearse, October 1959.

AEC Group Shelter, AEC Facilities Division, Holmes & Narver,
Inc., June 1960.

Comparative Nuclear Effects of Biomedical Interest, Clayton S.
White, I. Gerald Bowen, Donald R. Richmond, and Robert L.
Corsbie, January 1961.

'A Model Designed to Predict the Motion of Objects Translated by

Classical Blast Waves, 1. Gerald Bowen, Ray W. Albright, E. Royce
Fletcher, and Clayton S. White, June 1961.

An Experimental Evaluation of the Radiation Protection Afforded
by a Large Modern Concrete Office Building, J. F. Batter, Jr.,
A. L. Kaplan, and E. T. Clarke, January 1960.

Aerial Radiologicai Monitoring System. 1. Theoretical Analysis,
Design, and Operation of a Revised System, R. F, Merian,
J. G. Lackey, and J. E, Hand, February 1961.

Experimental Evaluation of the Radiation Protection Afforded by
Typical Oak Ridge Homes Against Distributed Sources, T. D.
Strickler and J. A, Auxier, April 1960.




